City of Ogdensburg Management Plan: Recommended Tree Care ### New Tree Planting Think of the tree you just purchased as a lifetime investment. How well your tree, and investment, grows depends on the type of tree and location you select for planting, the care you provide when the tree is planted, and follow-up care the tree receives after planting. ### Planting the Tree The ideal time to plant trees and shrubs is during the dormant season and the fall after leaf drop or early spring before bud break. Weather conditions are cool and allow plants to establish roots in the new location before spring rains and summer heat stimulate new top growth. However, trees properly cared for in the nursery or garden center, and given the appropriate care during transport to prevent damage, can be planted throughout the growing season. In tropical and subtropical climates where trees grow year round, any time is a good time to plant a tree, provided that sufficient water is available. In either situation, proper handling during planting is essential to ensure a healthy future for new trees and shrubs. Before you begin planting your tree, be sure you have had all underground utilities located prior to digging. If the tree you are planting is balled or bare root, it is important to understand that its root system has been reduced by 90 to 95 percent of its original size during transplanting. As a result of the trauma caused by the digging process, trees commonly exhibit what is known as transplant shock. Containerized trees may also experience transplant shock, particularly if they have circling roots that must be cut. Transplant shock is indicated by slow growth and reduced vigor following transplanting. Proper site preparation before and during planting coupled with good follow-up care reduces the amount of time the plant experiences transplant shock and allows the tree to quickly establish in its new location. Carefully follow nine simple steps, and you can significantly reduce the stress placed on the plant at the time of planting. - 1. Dig a shallow, broad planting hole. Make the hole wide, as much as three times the diameter of the root ball but only as deep as the root ball. It is important to make the hole wide because the roots on the newly establishing tree must push through surrounding soil in order to establish. On most planting sites in new developments, the existing soils have been compacted and are unsuitable for healthy root growth. Breaking up the soil in a large area around the tree provides the newly emerging roots room to expand into loose soil to hasten establishment. - 2. Identify the trunk flare. The trunk flare is where the roots spread at the base of the tree. This point should be partially visible after the tree has been planted (see diagram). If the trunk flare is not partially visible, you may have to remove some soil from the top of the root ball. Find it so you can determine how deep the hole needs to be for proper planting. - Remove tree container for containerized trees. Carefully cutting down the sides of the container may make this easier. Inspect the root ball for circling roots and cut or remove them. Expose the trunk flare, if necessary. - 4. Place the tree at the proper height. Before placing the tree in the hole, check to see that the hole has been dug to the proper depth and no more. The majority of the roots on the newly planted tree will develop in the top 12 inches of soil. If the tree is planted too deeply, new roots will have difficulty developing because of a lack of oxygen. It is better to plant the tree a little high, 2 to 3 inches above the base of the trunk flare, than to plant it at or below the original growing level. This planting level will allow for some settling (see diagram). To avoid damage when setting the tree in the hole, always lift the tree by the root ball and never by the trunk. - Straighten the tree in the hole. Before you begin backfilling, have someone view the tree from several directions to confirm that the tree is straight. Once you begin backfilling, it is difficult to reposition the tree. - 6. Fill the hole gently but firmly. Fill the hole about one-third full and gently but firmly pack the soil around the base of the root ball. Then, if the root ball is wrapped, cut and remove any fabric, plastic, string, and wire from around the trunk and root ball to facilitate growth (see diagram). Be careful not to damage the trunk or roots in the process. Fill the remainder of the hole, taking care to firmly pack soil to eliminate air pockets that may cause roots to dry out. To avoid this problem, add the soil a few inches at a time and settle with water. Continue this process until the hole is filled and the tree is firmly planted. It is not recommended to apply fertilizer at the time of planting. - 7. Stake the tree, if necessary. If the tree is grown and dug properly at the nursery, staking for support will not be necessary in most home landscape situations. Studies have shown that trees establish more quickly and develop stronger trunk and root systems if they are not staked at the time of planting. However, protective staking may be required on sites where lawn mower damage, vandalism, or windy conditions are concerns. If staking is necessary for support, there are three methods to choose among: staking, guying, and ball stabilizing. One of the most common methods is staking. With this method, two stakes used in conjunction with a wide, flexible tie material on the lower half of the tree will hold the tree upright, provide flexibility, and minimize injury to the trunk (see diagram). Remove support staking and ties after the first year of growth. - 8. Mulch the base of the tree. Mulch is simply organic matter applied to the area at the base of the tree. It acts as a blanket to hold moisture, it moderates soil temperature extremes, and it reduces competition from grass and weeds. Some good choices are leaf litter, pine straw, shredded bark, peat moss, or composted wood chips. A 2- to 4-inch layer is ideal. More than 4 inches may cause a problem with oxygen and moisture levels. When placing mulch, be sure that the actual trunk of the tree is not covered. Doing so may cause decay of the living bark at the base of the tree. A mulch-free area, 1 to 2 inches wide at the base of the tree, is sufficient to avoid moist bark conditions and prevent decay. 9. Provide follow-up care. Keep the soil moist but not soaked; overwatering causes leaves to turn yellow or fall off. Water trees at least once a week, barring rain, and more frequently during hot weather. When the soil is dry below the surface of the mulch, it is time to water. Continue until mid-fall, tapering off for lower temperatures that require less-frequent watering. Other follow-up care may include minor pruning of branches damaged during the planting process. Prune sparingly immediately after planting and wait to begin necessary corrective pruning until after a full season of growth in the new location. After you have completed these nine simple steps, further routine care and favorable weather conditions will ensure that your new tree or shrub will grow and thrive. A valuable asset to any landscape, trees provide a long-lasting source of beauty and enjoyment for people of all ages. When questions arise about the care of your tree, be sure to consult your local ISA Certified Arborist or a tree care or garden center professional for assistance. #### The PHC Alternative Maintaining mature landscapes is a complicated undertaking. You may wish to consider a professional Plant Health Care (PHC) maintenance program, which is now available from many landscape care companies. A PHC program is designed to maintain plant vigor and should initially include inspections to detect and treat any existing problems that could be damaging or fatal. Thereafter, regular inspections and preventive maintenance will ensure plant health and beauty. #### Mature Tree Care Think of tree care as an investment. A healthy tree increases in value with age—paying big dividends, increasing property values, beautifying our surroundings, purifying our air, and saving energy by providing cooling shade from summer's heat and protection from winter's wind. Providing a preventive care program for your landscape plants is like putting money in the bank. Regular maintenance, designed to promote plant health and vigor, ensures their value will continue to grow. Preventing a problem is much less costly and time-consuming than curing one once it has developed. An effective maintenance program, including regular inspections and the necessary follow-up care of mulching, fertilizing, and pruning, can detect problems and correct them before they become damaging or fatal. Considering that many tree species can live as long as 200 to 300 years, including these practices when caring for your home landscape is an investment that will offer enjoyment and value for generations. ### Tree Inspection Tree inspection is an evaluation tool to call attention to any change in the tree's health before the problem becomes too serious. By providing regular inspections of mature trees at least once a year, you can prevent or reduce the severity of future disease, insect, and environmental problems. During tree inspection, be sure to examine four characteristics of tree vigor: new leaves or buds, leaf size, twig growth, and absence of crown dieback (gradual death of the upper part of the tree). A reduction in the extension of shoots (new growing parts), such as buds or new leaves, is a fairly reliable cue that the tree's health has recently changed. To evaluate this factor, compare the growth of the shoots over the past three years. Determine whether there is a reduction in the tree's typical growth pattern. Further signs of poor tree health are trunk decay, crown dieback, or both. These symptoms often indicate problems that began several years before. Loose bark or deformed growths, such as trunk conks (mushrooms), are common signs of stem decay. Any abnormalities found during these inspections, including insect activity and spotted, deformed, discolored, or dead leaves and twigs, should be noted and watched closely. If you are uncertain as to what should be done, report your findings to your local ISA Certified Arborist or other tree care professional for advice on possible treatment. ### Mulching #### **Proper Mulching Techniques** Mulches are materials placed over the soil surface to maintain moisture and improve soil conditions. Mulching is one of the most beneficial things a home owner can do for the health of a tree. Mulch can reduce water loss from the soil, minimize weed competition, and improve soil structure. Properly applied, mulch can give landscapes a handsome, well-groomed appearance. Mulch must be applied properly; if it is too deep or if the wrong material is used, it can actually cause significant harm to trees and other landscape plants. #### Benefits of Proper Mulching - Helps maintain soil moisture. Evaporation is reduced, and the need for watering can be minimized. - Helps control weeds. A 2- to 4-inch layer of mulch will reduce the germination and growth of weeds. - Mulch serves as nature's insulating blanket. Mulch keeps soils warmer in the winter and cooler in the summer. - Many types of mulch can improve soil aeration, structure (aggregation of soil particles), and drainage over time. - Some mulches can improve soil fertility. - A layer of mulch can inhibit certain plant diseases. - Mulching around trees helps facilitate maintenance and can reduce the likelihood of damage from "weed whackers" or the dreaded "lawn mower blight." - Mulch can give planting beds a uniform, well-cared-for look. Trees growing in a natural forest environment have their roots anchored in a rich, well-aerated soil full of essential nutrients. The soil is blanketed by leaves and organic materials that replenish nutrients and provide an optimal environment for root growth and mineral uptake. Urban landscapes, however, are typically a much harsher environment with poor soils, little organic matter, and large fluctuations in temperature and moisture. Applying a 2-to 4-inch layer of organic mulch can mimic a more natural environment and improve plant health. The root system of a tree is not a mirror image of the top. The roots of most trees can extend out a significant distance from the tree trunk. Although the guideline for many maintenance practices is the drip line—the outermost extension of the canopy—the roots can grow many times that distance. In addition, most of the fine, absorbing roots are located within inches of the soil surface. These roots, which are essential for taking up water and minerals, require oxygen to survive. A thin layer of mulch, applied as broadly as practical, can improve the soil structure, oxygen levels, temperature, and moisture availability where these roots grow. ### Types of Mulch Mulches are available commercially in many forms. The two major types of mulch are inorganic and organic. Inorganic mulches include various types of stone, lava rock, pulverized rubber, geotextile fabrics, and other materials. Inorganic mulches do not decompose and do not need to be replenished often. On the other hand, they do not improve soil structure, add organic materials, or provide nutrients. For these reasons, most horticulturists and arborists prefer organic mulches. Organic mulches include wood chips, pine needles, hardwood and softwood bark, cocoa hulls, leaves, compost mixes, and a variety of other products usually derived from plants. Organic mulches decompose in the landscape at different rates depending on the material and climate. Those that decompose faster must be replenished more often. Because the decomposition process improves soil quality and fertility, many arborists and other landscape professionals consider that characteristic a positive one, despite the added maintenance. #### Not Too Much! As beneficial as mulch is, too much can be harmful. The generally recommended mulching depth is 2 to 4 inches. Unfortunately, many landscapes are falling victim to a plague of overmulching. A new term, "mulch volcanoes," has emerged to describe mulch that has been piled up around the base of trees. Most organic mulches must be replenished, but the rate of decomposition varies. Some mulches, such as cypress mulch, remain intact for many years. Top dressing with new mulch annually (often for the sake of refreshing the color) creates a buildup to depths that can be unhealthy. Deep mulch can be effective in suppressing weeds and reducing maintenance, but it often causes additional problems. "Mulch volcanoes" cause many problems for trees. ### Problems Associated with Improper Mulching - Deep mulch can lead to excess moisture in the root zone, which can stress the plant and cause root rot. - Piling mulch against the trunk or stems of plants can stress stem tissues and may lead to insect and disease problems. - Some mulches, especially those containing cut grass, can affect soil pH. Continued use of certain mulches over long periods can lead to micronutrient deficiencies or toxicities. - Mulch piled high against the trunks of young trees may create habitats for rodents that chew the bark and can girdle the trees. - Thick blankets of fine mulch can become matted and may prevent the penetration of water and air. In addition, a thick layer of fine mulch can become like potting soil and may support weed growth. - Anaerobic "sour" mulch may give off pungent odors, and the alcohols and organic acids that build up may be toxic to young plants. ### **Proper Mulching** It is clear that the choice of mulch and the method of application can be important to the health of landscape plants. The following are some guidelines to use when applying mulch. Inspect plants and soil in the area to be mulched. Determine whether drainage is adequate. Determine whether there are plants that may be affected by the choice of mulch. Most commonly available mulches - work well in most landscapes. Some plants may benefit from the use of a slightly acidifying mulch such as pine bark. - If mulch is already present, check the depth. Do not add mulch if there is a sufficient layer in place. Rake the old mulch to break up any matted layers and to refresh the appearance. Some landscape maintenance companies spray mulch with a water-soluble, vegetable-based dye to improve the appearance. - If mulch is piled against the stems or tree trunks, pull it back several inches so that the base of the trunk and the root crown are exposed. - Organic mulches usually are preferred to inorganic materials due to their soil-enhancing properties. If organic mulch is used, it should be well aerated and, preferably, composted. Avoid sour-smelling mulch. - Composted wood chips can make good mulch, especially when they contain a blend of leaves, bark, and wood. Fresh wood chips also may be used around established trees and shrubs. Avoid using noncomposted wood chips that have been piled deeply without exposure to oxygen. - For well-drained sites, apply a 2- to 4-inch layer of mulch. If there are drainage problems, a thinner layer should be used. Avoid placing mulch against the tree trunks. Place mulch out to the tree's drip line or beyond. Remember: If the tree had a say in the matter, its entire root system (which usually extends well beyond the drip line) would be mulched. Mulch wide-not deep. #### Fertilization Fertilization is another important aspect of mature tree care. Trees require certain nutrients (essential elements) to function and grow. Urban landscape trees can be growing in soils that do not contain sufficient available nutrients for satisfactory growth and development. In these situations, it may be necessary to fertilize to improve plant vigor. Fertilizing a tree can improve growth; however, if fertilizer is not applied wisely, it may not benefit the tree at all and may even adversely affect the tree. Mature trees making satisfactory growth may not require fertilization. When considering supplemental fertilizer, it is important to know which nutrients are needed and when and how they should be applied. Soil conditions, especially pH and organic matter content, vary greatly, making the proper selection and use of fertilizer a somewhat complex process. When dealing with a mature tree that provides considerable benefit and value to your landscape, it is worth the time and investment to have the soil tested for nutrient content. Any arborist can arrange to have your soil tested at a soil testing laboratory and can give advice on application rates, timing, and the best blend of fertilizer for each of your trees and other landscape plants. Mature trees have expansive root systems that extend from 2 to 3 times the size of the leaf canopy. A major portion of actively growing roots is located outside the tree's drip line. It is important to understand this fact when applying fertilizer to your trees as well as your turf. Many lawn fertilizers contain weed and feed formulations that may be harmful to your trees. When you apply a broadleaf herbicide to your turf, remember that tree roots coexist with turf roots. The same herbicide that kills broadleaf weeds in your lawn is picked up by tree roots and can harm or kill your broadleaf trees if applied incorrectly. Understanding the actual size and extent of a tree's root system before you fertilize is necessary to determine how much, what type, and where to best apply fertilizer. ### Pruning ### **Pruning Young Trees** Proper pruning is essential in developing a tree with a strong structure and desirable form. Trees that receive the appropriate pruning measures while they are young will require little corrective pruning when they mature. Keep these few simple principles in mind before pruning a tree: - Each cut has the potential to change the growth of the tree. Always have a purpose in mind before making a cut. - Proper technique is essential. Poor pruning can cause damage that lasts for the life of the tree. Learn where and how to make the cuts before picking up the pruning shears. - Trees do not heal the way people do. When a tree is wounded, it must grow over and compartmentalize the wound. As a result, the wound is contained within the tree forever. - Small cuts do less damage to the tree than large cuts. For that reason, proper pruning (training) of young trees is critical. Waiting to prune a tree until it is mature can create the need for large cuts that the tree cannot easily close. ### Making the Cut Where you make a pruning cut is critical to a tree's response in growth and wound closure. Make pruning cuts just outside the branch collar. Because the branch collar contains trunk or parent branch tissues, the tree will be damaged unnecessarily if you remove or damage it. In fact, if the cut is large, the tree may suffer permanent internal decay from an improper pruning cut. Pruning cuts should be made just outside the branch collar. If a permanent branch is to be shortened, cut it back to a lateral branch or bud. Internodal cuts, or cuts made between buds or branches, may lead to stem decay, sprout production, and misdirected growth. ### **Pruning Tools** When pruning trees, it is important to have the right tool for the job. For small trees, most of the cuts can be made with hand pruning shears (secateurs). The scissor-type, or bypass blade hand pruners, are preferred over the anvil type. They make cleaner, more accurate cuts. Cuts larger than one-half inch in diameter should be made with lopping shears or a pruning saw. Never use hedge shears to prune a tree. Whatever tool you use, make sure it is kept clean and sharp. Cuts made along a branch should be made at a lateral branch or bud. Bypass pruning # **Establishing a Strong Scaffold Structure** A good structure of primary scaffold branches should be established while the tree is young. The scaffold branches provide the framework of the mature tree. Properly trained young trees will develop a strong structure that requires less corrective pruning as they mature. The goal in training young trees is to establish a strong trunk with sturdy, well-spaced branches. The strength of the branch structure depends on the relative sizes of the branches, the branch angles, and the spacing of the limbs. Naturally, those factors vary with the growth habit of the tree. Pin oaks and sweetgums, for example, have a conical shape with a central leader. Elms and live oaks are often wide-spreading without a central leader. Other trees, such as lindens and Bradford pears, are densely branched. Good pruning techniques remove structurally weak branches while maintaining the natural form of the tree. # Trunk Development For most young trees, maintain a single dominant leader growing upward. Do not prune back the tip of this leader. Do not allow secondary branches to outgrow the leader. Sometimes a tree will develop double leaders known as co-dominant stems. Co-dominant When co-dominant stems develop, bark may become "included" in the crotch. It is best to prime one of the stems. stems can lead to structural weaknesses, so it is best to remove one of the stems while the tree is young. The lateral branches growing on the sides contribute to the development of a sturdy well-tapered trunk. It is important to leave some of these lateral branches in place, even though they may be pruned out later. These branches, known as temporary branches, also help protect the trunk from sun and mechanical injury. Temporary branches should be kept short enough not to be an obstruction or compete with selected permanent branches. #### **Permanent Branch Selection** Nursery trees often have low branches that may make the tree appear well-proportioned when young, but low branches are seldom appropriate for large-growing trees in an urban environment. How a young tree is trained depends on its primary function in the landscape. For example, street trees must be pruned so that they allow at least 16 feet of clearance for traffic. Most landscape trees require only about 8 feet of clearance. The height of the lowest permanent branch is determined by the tree's intended function and location in the landscape. Trees that are used to screen an unsightly view or provide a wind break may be allowed to branch low to the ground. Most large-growing trees in the landscape must eventually be pruned to allow head clearance. The spacing of branches, both vertically and radially, in the tree is very important. Branches selected as permanent scaffold branches must be well-spaced along the trunk. Maintain radial balance with branches growing outward in each direction. A good rule of thumb for the vertical spacing of permanent branches is to maintain a distance equal to 3 percent of the tree's eventual height. Thus, a tree that will be 50 feet tall should have permanent scaffold branches spaced about 18 inches apart along the trunk. Avoid allowing two scaffold branches to arise one above the other on the same side of the tree Branches should be well spaced radially and along the trunk as shown in the tree on the left. Some trees have a tendency to develop branches with narrow angles of attachment and tight crotches. As the tree grows, bark can become enclosed deep within the crotch between the branch and the trunk. Such growth is called included bark. Included bark weakens the attachment of the branch to the trunk and can lead to branch failure when the tree matures. You should prune branches with weak attachments while they are young. Avoid over thinning the interior of the tree. The leaves of each branch must manufacture enough food to keep that branch alive and growing. In addition, each branch must contribute food to grow and feed the trunk and roots. Removal of too many leaves can "starve" the tree, reduce growth, and make the tree unhealthy. A good rule of thumb is to maintain at least half the foliage on branches arising in the lower two-thirds of the tree. #### **Newly Planted Trees** Pruning of newly planted trees should be limited to corrective pruning. Remove torn or broken branches, and save other pruning measures for the second or third year. The belief that trees should be pruned when planted to compensate for root loss is misguided. Trees need their leaves and shoot tips to provide food and the substances that stimulate new root production. Unpruned trees establish faster with a stronger root system than trees pruned at the time of planting. ### Wound Dressings Wound dressings were once thought to accelerate wound closure, protect against insects and diseases, and reduce decay. However, research has shown that dressings do not reduce decay or speed closure and rarely prevent insect or disease infestations. Most experts recommend that wound dressing not be used. If a dressing must be used for cosmetic purposes, use a thin coating of a material that is not toxic to the plant. ### **Pruning Mature Trees** Pruning is the most common tree maintenance procedure. Although forest trees grow quite well with only nature's pruning, landscape trees require a higher level of care to maintain their safety and aesthetics. Pruning should be done with an understanding of how the tree responds to each cut. Improper pruning can cause damage that will last for the life of the tree, or worse, shorten the tree's life. ### **Reasons for Pruning** Because each cut has the potential to change the growth of the tree, no branch should be removed without a reason. Common reasons for pruning are to remove dead branches, to remove crowded or rubbing limbs, and to eliminate hazards. Trees may also be pruned to increase light and air penetration to the inside of the tree's crown or to the landscape below. In most cases, mature trees are pruned as a corrective or preventive measure. Routine thinning does not necessarily improve the health of a tree. Trees produce a dense crown of leaves to manufacture the sugar used as energy for growth and development. Removal of foliage through pruning can reduce growth and stored energy reserves. Heavy pruning can be a significant health stress for the tree. Yet if people and trees are to coexist in an urban or suburban environment, then we sometimes have to modify the trees. City environments do not mimic natural forest conditions. Safety is a major concern. Also, we want trees to complement other landscape plantings and lawns. Proper pruning, with an understanding of tree biology, can maintain good tree health and structure while enhancing the aesthetic and economic values of our landscapes. #### When to Prune Most routine pruning to remove weak, diseased, or dead limbs can be accomplished at any time during the year with little effect on the tree. As a rule, growth is maximized and wound closure is fastest if pruning takes place before the spring growth flush. Some trees, such as maples and birches, tend to "bleed" if pruned early in the spring. It may be unsightly, but it is of little consequence to the tree. A few tree diseases, such as oak wilt, can be spread when pruning wounds allow spores access into the tree. Susceptible trees should not be pruned during active transmission periods. Heavy pruning just after the spring growth flush should be avoided. At that time, trees have just expended a great deal of energy to produce foliage and early shoot growth. Removal of a large percentage of foliage at that time can stress the tree. ### Making Proper Pruning Cuts Pruning cuts should be made just outside the branch collar. The branch collar contains trunk or parent branch tissue and should not be damaged or removed. If the trunk collar has grown out on a dead limb to be removed, make the cut just beyond the collar. Do not cut the collar. Pruning cuts should be made just outside the branch collar. On a dead branch that has a collar of live wood, the final cut should be made just beyond the outer edge of the collar If a large limb is to be removed, its weight should first be reduced. This is done by making an undercut about 12 to 18 inches from the limb's point of attachment. Make a second cut from the top, directly above or a few inches farther out on the limb. Doing so removes the limb, leaving the 12- to 18-inch stub. Remove the stub by cutting back to the branch collar. This technique reduces the possibility of tearing the bark. Use the three-cut method to remove a large limb. ### **Pruning Techniques** Specific types of pruning may be necessary to maintain a mature tree in a healthy, safe, and attractive condition. Cleaning is the removal of dead, dying, diseased, crowded, weakly attached, and low-vigor branches from the crown of a tree. Thinning is the selective removal of branches to increase light penetration and air movement through the crown. Thinning opens the foliage of a tree, reduces weight on heavy limbs, and helps retain the tree's natural shape. Raising removes the lower branches from a tree in order to provide clearance for buildings, vehicles, pedestrians, and vistas. Reduction reduces the size of a tree, often for clear- ance for utility lines. Reducing the height or spread of a tree is best accomplished by pruning back the leaders and branch terminals to lateral branches that are large enough to assume the terminal roles (at least one-third the diameter of the cut stem). Compared to topping, reduction helps maintain the form and structural integrity of the tree. #### How Much Should Be Pruned? The amount of live tissue that should be removed depends on the tree size, species, and age, as well as the pruning objectives. Younger trees tolerate the removal of a higher percentage of living tissue better than mature trees do. An important principle to remember is that a tree can recover from several small pruning wounds faster than from one large wound. A common mistake is to remove too much inner foliage and small branches. It is important to maintain an even distribution of foliage along large limbs and in the lower portion of the crown. Overthinning reduces the tree's sugar production capacity and can create tip-heavy limbs that are prone to failure. Mature trees should require little routine pruning. A widely accepted rule of thumb is never to remove more than one-quarter of a tree's leaf-bearing crown. In a mature tree, pruning even that much could have negative effects. Removing even a single, large-diameter limb can create a wound that the tree may not be able to close. The older and larger a tree becomes, the less energy it has in reserve to close wounds and defend against decay or insect attack. The pruning of large mature trees is usually limited to removal of dead or potentially hazardous limbs. #### Removal Although tree removal is a last resort, there are circumstances when it is necessary. An arborist can help decide whether or not a tree should be removed. Professionally trained arborists have the skills and equipment to safely and efficiently remove trees. Removal is recommended when a tree - is dead, dying, or considered irreparably hazardous - is causing an obstruction or is crowding and causing harm to other trees and the situation is impossible to correct through pruning - is to be replaced by a more suitable specimen - should be removed to allow for construction With proper maintenance, trees are attractive and can add considerable value to your property. Poorly maintained trees, on the other hand, can be a significant liability. Pruning or removing trees, especially large trees, can be dangerous work. It should be performed only by those trained and equipped to work safely in trees. For more information on mature tree care, contact your local ISA Certified Arborist. ### **Avoiding Tree Damage during Construction** As cities and suburbs expand, wooded lands are being developed into commercial and residential sites. Homes are constructed in the midst of trees to take advantage of the aesthetic and environmental value of the wooded lots. Wooded properties can be worth as much as 20 percent more than those without trees, and people value the opportunity to live among trees. Unfortunately, the processes involved with construction can be deadly to nearby trees. Unless the damage is extreme, the trees may not die immediately but could decline over several years. With this delay in symptom development, you may not associate the loss of the tree with the construction. It is possible to preserve trees on building sites if the right measures are taken. The most important step is to hire a professional arborist during the planning stage. An arborist can help you decide which trees can be saved and can work with the builder to protect the trees throughout each construction phase. How Trees Are Damaged During Construction Physical Injury to Trunk and Crown. Construction equipment can injure the aboveground portion of a tree by breaking branches, tearing the bark, and wounding the trunk. These injuries are permanent and, if extensive, can be fatal. Cutting of Roots. The digging and trenching that are necessary to construct a house and install underground utilities will likely sever a portion of the roots of many trees in the area. It is easy to appreciate the potential for damage if you understand where roots grow. The roots of a tree are found mostly in the upper 6 to 12 inches of the soil. In a mature tree, the roots extend far from the trunk. In fact, roots typically are found growing a distance of one to three times the height of the tree. The amount of damage a tree can suffer from root loss depends, in part, on how close to the tree the cut is made. Severing one major root can cause the loss of 5 to 20 percent of the root system. The roots of a tree extend for from the trunk and are found mostly in the upper 6 to 12 inches of soil. Another problem that may result from root loss caused by digging and trenching is that the potential for the trees to fall over is increased. The roots play a critical role in anchoring a tree. If the major support roots are cut on one side of a tree, the tree may fall or blow over. Less damage is done to tree roots if utilities are tunneled under a tree rather than across the roots. Less damage is done to tree roots if utilities are tunneled under a tree (left, top and bottom) rather than across roots (right, top and bottom). Soil Compaction. An ideal soil for root growth and development is about 50 percent pore space. These pores—the spaces between soil particles—are filled with water and air. The heavy equipment used in construction com-pacts the soil and can dramatically reduce the amount of pore space. This compaction not only inhibits root growth and penetration but also decreases oxygen in the soil that is essential to the growth and function of the roots. Smothering Roots by Adding Soil. Most people are surprised to learn that 90 percent of the fine roots that absorb water and minerals are in the upper 6 to 12 inches of soil. Roots require space, air, and water. Roots grow best where these requirements are met, which is usually near the soil surface. Piling soil over the root system or increasing the grade smothers the roots. It takes only a few inches of added soil to kill a sensitive mature tree. Exposure to the Elements. Trees in a forest grow as a community, protecting each other from the elements. The trees grow tall, with long, straight trunks and high canopies. Removing neighboring trees or opening the shared canopies of trees during construction exposes the remaining trees to sunlight and wind. The higher levels of sunlight may cause sunscald on the trunks and branches. Also, the remaining trees are more prone to breaking from wind or ice loading. ### **Getting Advice** Hire a professional arborist in the early planning stage. Many of the trees on your property may be saved if the proper steps are taken. Allow the arborist to meet with you and your building contractor. Your arborist can assess the trees on your property, determine which are healthy and structurally sound, and suggest measures to preserve and protect them. One of the first decisions is determining which trees are to be preserved and which should be removed. You must consider the species, size, maturity, location, and condition of each tree. The largest, most mature trees are not always the best choices to preserve. Younger, more vigorous trees usually can survive and adapt to the stresses of construction better. Try to maintain diversity of species and ages. Your arborist can advise you about which trees are more sensitive to compaction, grade changes, and root damage. ### Planning Your arborist and builder should work together in planning the construction. The builder may need to be educated regarding the value of the trees on your property and the importance of saving them. Few builders are aware of the way trees' roots grow and what must be done to protect them. Sometimes small changes in the placement or design of your house can make a great difference in whether a critical tree will survive. An alternative plan may be more friendly to the root system. For example, bridging over the roots may substitute for a conventional walkway. Because trenching near a tree for utility installation can be damaging, tunneling under the root system may be a good option. ### **Erecting Barriers** Because our ability to repair construction damage to trees is limited, it is vital that trees be protected from injury. The single most important action you can take is to set up construction fences around all of the trees that are to remain. The fences should be placed as far out from the trunks of the trees as possible. As a general guideline, allow 1 foot of space from the trunk for each inch of trunk diameter. The intent is not merely to protect the aboveground portions of the trees but also the root systems. Remember that the root systems extend much farther than the drip lines of the trees. Instruct construction personnel to keep the fenced area clear of building materials, waste, and excess soil. No digging, trenching, or other soil disturbance should be allowed in the fenced area. Protective fences should be erected as far out from the trunks as possible in order to protect the root system. ### **Limiting Access** If at all possible, it is best to allow only one access route on and off the property. All contractors must be instructed where they are permitted to drive and park their vehicles. Often this same access drive can later serve as the route for utility wires, water lines, or the driveway. Protective fences should be erected as far out from the trunks as possible in order to protect the root systems. Specify storage areas for equipment, soil, and construction materials. Limit areas for burning (if permitted), cement wash-out pits, and construction work zones. These areas should be away from protected trees. ### Specifications Get it in writing. All of the measures intended to protect your trees must be written into the construction specifications. The written specifications should detail exactly what can and cannot be done to and around the trees. Each subcontractor must be made aware of the barriers, limitations, and specified work zones. It is a good idea to post signs as a reminder. Fines and penalties for violations should be built into the specifications. Not too surprisingly, subcontractors are much more likely to adhere to the tree preservation clauses if their profit is at stake. The severity of the fines should be proportional to the potential damage to the trees and should increase for multiple infractions. ### **Maintaining Good Communications** It is important to work together as a team. You may share clear objectives with your arborist and your builder, but one subcontractor can destroy your prudent efforts. Construction damage to trees is often irreversible. Visit the site at least once a day if possible. Your vigilance will pay off as workers learn to take your wishes seriously. Take photos at every stage of construction. If any infraction of the specifications does occur, it will be important to prove liability. ### **Final Stages** It is not unusual to go to great lengths to preserve trees during construction, only to have them injured during landscaping. Installing irrigation systems and rototilling planting beds are two ways the root systems of trees can be damaged. Remember also that small increases in grade (as little as 2 to 6 inches) that place additional soil over the roots can be devastating to your trees. Careful planning and communicating with landscape designers and contractors is just as important as avoiding tree damage during construction. ### Post-Construction Tree Maintenance Your trees will require several years to adjust to the injury and environmental changes that occur during construction. Stressed trees are more prone to health problems such as disease and insect infestations. Talk to your arborist about continued maintenance for your trees. Continue to monitor your trees, and have them periodically evaluated for declining health or safety hazards.